

AUTHORS

Kate Yurkova
Deep Learning Research Engineer, Deci

Avi Lumelsky
Software Architect, Deci

Ran Rubin
DevOps Engineer, Deci

Lucy Kadets
Product Manager, Deci

Shai Rozenberg
Customer Facing Deep Learning Group
Manager, Deci

Nave Assaf
Inference Team Lead, Deci

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™

Deploying deep learning models at the
edge can be daunting. Each choice of
device comes with its own pros and
cons. Ultimately, you’ll need to build a
model that can support the level of
complexity your application requires,
while taking into account the
hardware’s specifications and available
compute power.

In recent years we’ve been witnessing
the introduction of more and more
powerful devices with small form-
factors designed for low-power
operation. Among such devices is the
NVIDIA® Jetson™ family. The NVIDIA
Jetson family is designed to accelerate
deep learning models for a variety of
applications including robotics, drones,
IoT devices, autonomous cars, and
more.

What makes NVIDIA Jetson ideal for
edge computing is the fact that it’s a
small but powerful computer that can
run multiple neural networks in parallel.
This is perfect for tasks such as image
recognition, especially classification,
object detection, and segmentation, as
well as speech processing, speech
recognition, and many others. That
said, there are some challenges due to
the restrictions of its constrained
environment.

If you’re working with, or considering
working with Jetson, this guide is the
perfect place to gain expertise.

EXECUTIVE SUMMARY

The material gathered here is written
from a deep learning inference
perspective. Our goal is to guide you on
your journey through Jetson, starting
from the initial decision to use it as your
deployment hardware, ending with
those nuances so crucial to
deployment, and including tips and
tricks for all the stages in between.

For each recommendation provided in
this guide, you’ll learn how to do it
yourself, where to find the code, what
tools you need, and where to go for
even more detail.

You’ll also learn about the Deci
Platform, which will save you loads of
time and frustration. We explain how
you can take advantage of neural
architecture search to guarantee the
best results possible for your
application and hardware – all while
maintaining accuracy.

Go ahead, read on, and let us know if
you’ve got any ideas or questions.

2

Best practices for deploying your model on Jetson

Summary

Resort to neural architecture search

Doing NAS the easy way

Training your model for Jetson

TABLE OF CONTENTS

Executive summary

What you need to know about Jetson hardware

The board family

NVIDIA Jetson developer kit or a plain Jetson module?

Major board components

Getting started with installation and setup

What makes deep learning on edge devices challenging?

Maximizing compute power with the right configuration

Tuning for performance

Choosing a model for Jetson

Know your application flow

Let’s benchmark

How to use Infery in 3 simple steps

Deci Platform to the rescue!

Benchmarking your model on various hardware

When the hardware surprises you

Profile your network

2
4
4
6
6
7
8
11
12
18
20
21
23
26
27
30
30
32
33
35
38
40

The NVIDIA Jetson family is a great choice when it comes to finding the optimal edge
hardware in terms of computing power, price, and physical weight. The platform is
presented as a family of boards, such as Nano, TX2, Xavier NX, AGX Xavier, and Orin.
You can buy a Jetson Nano for as little as $60, its weight is a mere 250 g (~9 ounces),
and it can run on as little as 5 watts.

As for the supported software stack, an onboard NVIDIA GPU makes deployment
easier by opening access to a CUDA backend, something that many machine learning
practitioners are already familiar with. It also includes the TensorRT graph compiler,
built to speed up your inference.

WHAT YOU NEED TO KNOW ABOUT
JETSON HARDWARE

The Jetson platform has high-performance edge computers named modules, or
boards. There are a few of them available on the market with different capacities. If
you’re thinking that Jetson might be approximately what you need, then it’s time to
choose a specific board. Table 1 below presents the major configurations available.

For each one, you can see its GPU memory, GPU architecture, and the quantization
levels supported for the architecture. The power budgets are also included, and the
range shows all the options available within an individual device. For more
information on these power options please refer to “Maximizing Compute Power with
the Right Configuration” on page 11.

The Board Family

Figure 1: A Jetson Nano with a size
reference (Image source: Deci)

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™4

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/buy-jetson

Supported
Quantization
Levels

PowerBoard Memory GPU Architecture

Nano 4 GB NVIDIA Maxwell
architecture with 128
NVIDIA CUDA® cores

FP32, FP16 5W | 10W

TX2 NX 4 GB NVIDIA Pascal™
architecture GPU with
256 NVIDIA CUDA® cores

FP32, FP16 7.5W | 15W

TX2 8 GB 256-core NVIDIA Pascal™
GPU architecture with 256
NVIDIA CUDA® cores

FP32, FP16 7.5W | 15W

TX2 NX 4 GB NVIDIA Pascal™
architecture GPU with 256
NVIDIA CUDA® cores

FP32, FP16 7.5W | 15W

Xavier NX 8 GB /
16 GB

384-core NVIDIA Volta™
GPU with 48 Tensor Cores

FP32, FP16,
INT8

10W | 15W |
20W

AGX
Xavier

32 GB /
64 GB

512-core Volta™ GPU with
64 Tensor Cores

FP32, FP16,
INT8

10W | 15W |
30W

AGX
Xavier
Industrial

32 GB 512-core Volta™ GPU with
64 Tensor Cores

FP32, FP16,
INT8

20W | 40W

Table 1: Jetson Hardware Configurations

Table 1 should help you understand which option is right for you, or at least help you
rule out a few configurations. If you already have, or are planning on using, a light-
weight model, then consider the options in the upper rows. Likewise, if your
application requires a larger model or a few concurrent workloads, then opt for a
more powerful device.

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™5

AGX Orin 32 GB /
64 GB

NVIDIA Ampere, 1792 /
2048 NVIDIA CUDA® cores
and 56 / 64 Tensor Cores

FP32, FP16,
INT8

15W | 40W |
60W

NVIDIA Jetson Developer Kit or Plain Jetson Module?

One more thing you need to consider before making a purchase is the contents of the
box you get and your future work setup. This means understanding whether you
should be working on the NVIDIA Jetson developer kit or getting the plain Jetson
module. While the latter can be used for production, it needs some additional work
like finding a carrier board to mount it on, and flashing the NVIDIA JetPack SDK.
Here’s the difference between the two:

Each Jetson developer kit includes a ‘non-production specification’ Jetson module
attached to a reference carrier board. The carrier board has the ports needed for
day-to-day work, such as an HDMI port to connect to a display, Ethernet port to
connect to the Internet, USB ports for a mouse and a keyboard, etc.

You can use the developer kit together with the JetPack SDK to develop and test
software for your use case in a pre-production environment.

Once you’re ready to move to production, you’ll have to switch to a production-grade
Jetson module and carrier board. This comes without pre-installed software. You’ll
need to attach it to a carrier board and flash it with the JetPack SDK.

Read more about this here.

Since we are already talking about the different device configurations, it’s worth
taking a peek at the internals of the Jetson module. For the most part, it won’t
impact your configuration choice but it will offer background for our later discussion
on “Maximizing Compute Power with the Right Configuration” (see page 11).

All Jetson boards feature processors that belong to the Tegra series, which
integrates the following components into one chip:

Major Board Components

ARM architecture CPU

GPU

Northbridge and southbridge, known
as a chipset in modern motherboards

Deep Learning Accelerator (DLA),
available only for the Xavier module
and Orin module

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™6

https://developer.nvidia.com/jetpack-sdk-50dp
https://developer.nvidia.com/embedded/faq#jetson-devkit-vs-module
http://nvdla.org/
https://developer.nvidia.com/blog/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-orin/

The way you install and set up your device depends on your needs. If you are using a
Jetson module in production, you most likely have unique hardware on which you’ll
mount your module; therefore, installing the JetPack is also unique to your hardware.

As described on the NVIDIA site, the JetPack SDK includes “the Jetson Linux Driver
Package with bootloader, Linux kernel, Ubuntu desktop environment, and a complete
set of libraries for acceleration of GPU computing, multimedia, graphics, and
computer vision. It also includes samples, documentation, and developer tools for
both host computer and developer kit, and supports higher level SDKs such as
DeepStream for streaming video analytics, Isaac for robotics, and Riva for
conversational AI.”

GETTING STARTED WITH INSTALLATION
AND SETUP

If you are using the Jetson module for experimentation and development, you can
find many suppliers who manufacture a suitable carrier board that can facilitate your
Jetson module, for example, Seeed, AverMedia, and of course, NVIDIA’s Developer Kit.

With so many options, we’re going to focus on the NVIDIA Developer Kit. Fortunately,
there are NVIDIA quickstart guides for the Jetson Nano Developer Kit, Jetson Xavier
NX Developer Kit, and Jetson Orin Developer Kit. Their tutorials will walk you through
setting up your developer kit using a MicroSD card.

If you have a Jetson Xavier NX developer kit, you can also mount an SSD card and run
from it. You can follow this tutorial by JetsonHacks.

Figure 2: Plugged in Jetson with
peripheral setup (Image source: Deci)

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™7

https://developer.nvidia.com/jetpack-sdk-50dp
https://developer.nvidia.com/jetpack-sdk-50dp
https://www.seeedstudio.com/A206-Carrier-Board-for-Jetson-Nano-Xavier-NX-p-5132.html?queryID=3e3fbf0212a9ab9e8618e433f3713573&objectID=5132&indexName=bazaar_retailer_products
https://professional.avermedia.com/carrier-board/
https://developer.nvidia.com/embedded/jetson-developer-kits
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#intro
https://developer.nvidia.com/embedded/learn/get-started-jetson-xavier-nx-devkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-agx-orin-devkit
https://www.jetsonhacks.com/2020/05/29/jetson-xavier-nx-run-from-ssd/

What Makes Deep Learning at the Edge Challenging?

How can you work more smoothly in this environment? First of all, unless necessary,
don’t try to override libraries that come with a JetPack. Instead, use as much as you
can from what is offered inside.

If you’re not using the latest version, you’ll probably benefit from an upgrade, since
each version comes with a handful of improvements. You can check for the latest
release on the official JetPack SDK page. And, in case you forgot which version you
installed on your device, use the following command:

Deep learning can be challenging under the best of circumstances, but deep learning
on edge devices carries extra complexity because of the constrained environment.
Edge hardware devices simply don’t have the flexibility you get in cloud machines
when it comes to OS, drivers, compute resources, memory, testing, and tuning. Failing
to adapt to this environment can lead to delays in deployment. Hence, it’s important
to be aware of the specific requirements as well as potential challenges that can
arise.

Let’s familiarize ourselves with Jetson’s specifications and requirements.

The ARM architecture used in Jetson requires the software to be compiled specifically
for ARM. This means you can’t install or connect to your favorite development tools
with a single command. If you want to install any open-source software, you have the
option to either build the ARM version yourself from the source code or rely on the
supplier to release the build.

Most software providers share their installation guidelines for Linux distributions,
Windows, and MacOS. However, they don’t usually share installation guidelines for
Jetson with its ARM architecture. The same problem occurs when installing many
other tools, which means that Jetson developers end up searching through forums for
tutorials on how to get it done. This applies to:

Jetson’s ARM Architecture

Code editors and IDEs like PyCharm, VSCode, and so on. When you do manage
to install it and open a window, it consumes loads of resources and ends up
restricting the device’s performance.

Deep learning libraries - PyTorch, TensorFlow, and others.

$ jetson_release

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™8

https://developer.nvidia.com/embedded/jetpack

Updating major NVIDIA libraries like CUDA to a newer version, requires installing a
whole new JetPack that will define the versions of the following and more:

If you’re a Python developer, then you are certainly used to the usual “pip install
$library” command. But on Jetson, many libraries can’t be installed this way; you have
to download and install a wheel instead.

Python 3.6 is the only version of Python available in the latest JetPack 4.6, even
though it reached its end-of-life in December 2021. You can build a newer Python
version on your own, but it’s not guaranteed to work.

As for the basic Python libraries, doing a regular pip install won’t hurt, so try that first.
If that fails, you can probably find an appropriate wheel in the Jetson Zoo or in the
Jetson Nano Wheels page on GitHub (if your module is Nano).

Python Libraries

Figure 3: One does not simply
install TensorFlow from pip on a
Jetson, (Image source: Deci)

Updating Libraries

CUDA Driver

CUDA toolkit

TensorRT

Python

In practice, a solid working environment can be hard to create, often making an
already complex project even more complicated. Pre-built containers can be a
simple solution. Check out the NVIDIA containers catalog and filter the catalog using
the tag “Jetson” to see what’s available for your use case.

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™9

https://elinux.org/Jetson_Zoo
https://github.com/jetson-nano-wheels
https://catalog.ngc.nvidia.com/containers?filters=&orderBy=dateModifiedDESC&query=jetson

TensorRT checkpoints can only be loaded on the same environment as the one in
which they were compiled. Because TensorRT is also coupled with the JetPack, make
sure you’re optimizing the model’s runtime for the JetPack version you intend to use in
production. You can see more information in the NVIDIA developer’s forum for Jetson.

TensorRT™ Checkpoints

When it comes to writing and executing code, if you are comfortable with command
line text editors like vim or nano, you shouldn’t have any problem using them on
Jetson. But if you prefer advanced IDEs, this will require a bit more effort. Here are a
few options:

Writing and Executing Code

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™10

Look for installation guides on forums and install an editor directly to the device.
This option will allow you to work as if it’s just another computer. With a display, a
mouse, and a keyboard plugged in, you can edit and execute your code directly.
Keep in mind that an IDE will share the compute power with your application
during tests.

Let’s be honest, can you really develop software without Googling a few issues?
It’s likely that at some point you’ll want to open an Internet browser and it’s going
to become yet another draining workload. Then, you may find yourself jumping in
between computers, developing on a Jetson, and Googling elsewhere, which, as
you can imagine, isn’t the most convenient experience.

Enable remote access to your Jetson (e.g. through SSH) and use it from your
computer. Here, all the editing is done in your regular environment: your laptop or
PC will handle an IDE and a browser. The trick is to set up a deployment
configuration and a remote interpreter/compiler in the code editor.

This will allow you to continuously update the code on Jetson (to deploy it) and
execute it directly on the device using the Jetson environment. As it happens, this
feature is available in the Professional Edition of PyCharm or in VS Code.

https://forums.developer.nvidia.com/c/agx-autonomous-machines/jetson-embedded-systems/70
https://www.vim.org/
https://www.vim.org/
https://www.nano-editor.org/
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/

Remember the internal module’s parts listed in “Major Board Components” on page
6? These and other board components don’t perform at the same level all the time.

Take a car for example; it would be wasteful to leave the engine running unless you
are going to drive it. The situation with the Jetson board’s components is similar -
they don’t work at full-power all the time. Instead, they support ranges of frequencies
and states that are scaled dynamically and automatically by the system.

This is an essential process for power management, thermal management, and
electrical management. In addition, not all CPU cores are always online and visible to
the OS. If you have a fan installed on your module, it also operates in a mode of which
you aren’t necessarily aware. The mode is either “quiet” or “cool” and remains fixed
until you change it.

Your user experience and your application’s speed will be substantially impacted by
the way frequencies are scaled, which cores are online, and other configurations.

Although there are many system governors that can handle everything in an optimal
and steady way, you’ll want to take charge so you can get your app up and running as
fast as possible. It’s the same basic reason why sports cars use a manual gear. If you
understand these details and the different Jetson performance modes, you can
unlock the full potential of your device.

MAXIMIZING COMPUTE POWER WITH THE
RIGHT CONFIGURATION

In this section, you’ll learn how to correctly tune your Jetson hardware with minimal
effort. You’ll see a few examples that demonstrate the impact of the frequency
scaling on the performance it will yield. We’ll also highlight some caveats to keep in
mind when applying new settings.

When used correctly, these settings can boost your deep
learning model’s inference speed by as much as 8X compared
to your current runs.

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™11

Figure 4: Changes in inference time of ResNet-18 on Xavier NX - before and after adjusting
configurations: Resolution: 224, Batch size: 1. Series of predictions done with a 10-second
interval in two different states of Jetson Xavier NX. The candlestick chart depicts min and
max latencies with a vertical range and an average latency with a horizontal line.

Inference Time of ResNet-18 on Xavier NX

If this is your first time working with Jetson, you might be reluctant to jump in and
adjust frequencies on your own. The good news is that you don’t have to. Each Jetson
device comes with a few optimized power budgets (e.g., for 5W, 10W, etc.) as well as a
command line tool called nvpmodel, which you can use to set the performance and
energy usage characteristics. This tool offers pre-defined power modes for each
energy budget and is very easy to use.

You can select a mode or even create a custom one, depending on the expected
workload of your application, the desired power consumption, energy source, etc.

To maximize performance using power and energy settings, begin by running:

Tuning for Performance

 $ sudo /usr/sbin/nvpmodel -q

to check the current settings on your device. You’ll see the names of the selected
power mode, fan mode, and so on. For example, here is a default output on Jetson
Xavier NX:

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™12

https://docs.nvidia.com/jetson/l4t/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#wwpID0E0HI0HA

where ID is an index of the mode you want to select. The maximum one is usually
defined with the ID 0. You can change the fan mode as well using:

$ sudo /usr/sbin/nvpmodel -d $FAN_MODE

Figure 5: Xavier NX - the supported and
selected maximum frequencies for GPU,
CPU, and EMC. The main takeaway is this:
no matter which frequencies a device
supports, you can limit the maximums to
lower values

MODE_10W_2CORE doesn’t tell us everything. To learn what it incorporates either
add --verbose to the command above or look for your Jetson series in the Clock
Frequency and Power Management Documentation. All the modes are defined in
/etc/nvpmodel.conf. Once you understand what your options are, try setting a
different configuration from what you currently have using the following:

NV Fan Mode:quiet
NV Power Mode: MODE_10W_2CORE
3

 $ sudo /usr/sbin/nvpmodel -m $ID

where FAN_MODE is either cool or quiet.

$ sudo /usr/bin/jetson_clocks --fan

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™13

MODE_10W_2CORE
--verbose

The Jetson Board Support Package provides the /usr/bin/jetson_clocks.sh script,
which sets the CPU, GPU, and EMC clocks to their maximum values. You can also use
the --fan flag to make the fan work at maximum speed. Run it with sudo as follows: --fan

https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/SD/Clocks.html

Running this script is different from simply choosing specific settings with nvpmodel.
Each power mode set with nvpmodel defines a range of frequencies, and the
current ones will be raised or lowered by the system within these ranges, depending
on the incoming workload.

You can check these values by adding the --show flag to the command above. The
big difference is that jetson_clocks.sh overrides this behavior and ensures that your
application uses maximum frequencies for the given mode at all times.

Remember, when you opt for the highest performance for your runs, you make your
device work harder. This will lead to increased power consumption and will raise the
temperature of your device.

To prevent throttling, keep an eye on the degrees in the output of the
 tegrastats command line utility. The throttling temperatures vary from module to
module and are available in the Power Management documentation under the
Thermal Specifications section. Here is a sample of the tegrastats output:

In addition to the official utilities discussed here, there are also many unofficial tools
(e.g. jetson_stats) that allow you to monitor the device state directly from Python.

Why is this important? Let's take a look at the latency that can be achieved on the
Jetson Xavier NX in two power modes using different architectures compiled for
TensorRT in FP32. If you are not familiar with TensorRT or quantization levels, don’t
worry, it’s orthogonal to the experiments below. You’ll learn more about them later on
in “Choosing a Model for Jetson” (See page 18).

We’re going to compare the default (MODE_10W_2CORE) and the maximum
performance (MODE_15W_2CORE) modes. Both graphs are based on a resolution of
224 and a batch size of 1, and show how the latency changed after each inference. The
x axis contains the latency of the x-th consequent inference.

 $ tegrastats
 RAM 738/3964MB (lfb 4x2MB) SWAP 253/4096MB (cached 7MB) CPU
[60%@921,52%@921,off,off] EMC_FREQ 0% GR3D_FREQ 0% PLL@38C CPU@41C
PMIC@100C GPU@39C AO@45.5C thermal@40C

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™14

nvpmodel

--show

tegrastats

https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/index.html
https://github.com/rbonghi/jetson_stats
https://developer.nvidia.com/tensorrt

Figure 6: Latency for ResNet-18 compiled for TensorRT on Jetson Xavier NX in 2 power
modes. The default is shown in red.

ResNet-18

Figure 7: Latency for DenseNet-121 compiled for TensorRT on Jetson Xavier NX in 2 power
modes. The default is shown in red.

DenseNet-121

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™15

To address the first issue, you can reduce the latency variance using
jetson_clocks. Take a look at Figures 8 and 9: we set up the benchmarking
exactly as we did for Figure 6 and 7 but first ran .

The important insights from these graphs are:

It takes a few back-to-back iterations to warm up the GPU before the latency
settles on a certain number. Your app will start slow and remain slow if you don't
utilize the GPU consistently. Consistency here refers to some back-to-back
workload that would prevent a GPU from cooling down in the interim, and this is
oftentimes defined by your use case.

Even after the warmup is complete, we can see that the default mode is
significantly slower than the maximum one.

jetson_clocks

Figure 8: ResNet-18 latency after tuning clock and power parameters.
The default is shown in red.

ResNet-18

11

22

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™16

Figure 9: DenseNet-121 latency after tuning clock and power parameters.
The default is shown in red.

DenseNet-121

To recap, in this section you became familiar with the Jetson architecture and learned
which settings can dramatically impact its performance. You also learned how to
change and monitor your module’s state using the following Jetson utilities:

nvpmodel

tegrastats

jetson_clocks

It’s definitely worth playing with these settings and customizing them to get the best
performance out of your Jetson hardware.

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™17

CHOOSING A MODEL FOR YOUR
JETSON DEVICE

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™18

With the hardware and development setup ready, you can finally dive into what is
arguably the most interesting task: selecting a model.

If your company is developing AI-infused applications, you likely have a model in
mind, perhaps an off-the-shelf solution for your use case or a proprietary design. You
should ask yourself before using this model if you checked its latency and throughput,
or compared it with other similar architectures. Even if you have done so, this step
must be done on the target inference hardware, in this case, your Jetson.

In deep learning, a form of AI that is modeled after the network architecture of the
human brain, there’s no such thing as “one-model-fits-all.” Different use cases,
deployment constraints, and even Jetson modules, all call for different architectures.

Of course, you may also arrive at this stage without a model in mind. For those of you
who are just starting, we’ve got you covered. Model selection is discussed in detail in
this section.

No matter where you are in your project, once the hardware arrives, the
benchmarking stage begins. There is no need to train a model prior to checking its
runtime, so this opens up the opportunity to test many options early on. Remember,
to get the most accurate measurements, benchmarking must be performed with a
sufficient understanding of the planned deployment configuration and as close to
production conditions as possible.

In addition to setting a power mode, you need to select which TensortRT you want to
use in advance and decide on the JetPack version accordingly. On Jetson, TensorRT is
responsible for the two cornerstones of runtime optimization: compilation and
quantization. Let’s make sure these concepts are clear, so you have a good base for
understanding the rest of this ebook.

Compilation

Model compilation is a technique that provides acceleration almost for free and with
no impact on accuracy. Compilers work by evaluating and fixing the computation
graph of a given model. The graph turns out to be incredibly useful, because it allows
the compiler to generate optimized inference code.

Not only is it adjusted for your hardware, but it also fuses together some sequences of
layers. Memory allocation and computation can be done more efficiently when you
know for certain which operation comes next.

Both the Jetson platform and TensorRT are NVIDIA products, so it’s no surprise that
they work well together. Of all the options for migrating your deep learning
framework to TensorRT, the easiest one is through ONNX, an open format built to
represent machine learning models. In practice, you need to look for a way to export
your model as an ONNX file, then convert this file into a TRT engine, for example
using the NVIDIA trtexec tool.

As you can imagine, the abundance of layers can complicate the process. While most
layers in your deep learning network are probably plain old convolutions, fully
connected layers, or ReLU activations, you might also encounter newer ones, like
activation functions from very recent academic publications.

In short, choose your layers wisely. The newer the layer, the more likely that it’s not yet
supported in either ONNX or the TRT itself. The good news is that you can also
implement it yourself by decomposing a layer into its basic operations.

For example, in PyTorch instead of using torch.nn.SiLU. , you can interchangeably
use the following class:

class SiLU(nn.Module):
 def forward(self, x):
 return x * torch.sigmoid(x)

You can also write your own plugin in C++ and CUDA, but this will require advanced
engineering and algorithmic knowledge, and is easier said than done. Check out these
docs to get a feel for this process.

The bottom line is that unless you understand why you need those particular layers in
your network, you are better off replacing them with something more conventional.
What’s more, if you follow our advice and attempt the compilation prior to training,
you’ll discover potential conversion problems early on, before the time-consuming
stage of training is done.

Quantization is an optimization technique that defines and applies different bit-
widths individually to each hidden layer of the neural network. Using quantization will
produce a network that is smaller in terms of a checkpoint weight and faster when it
comes to computation. On an edge device, this translates directly into energy
efficiency of the inference.

Quantization

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™19

torch.nn.SiLU

https://onnx.ai/
https://onnx.ai/
https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#extending

While the default model precision for Jetson is FP32, the existing quantization levels
are FP16 (also known as half-precision) and INT8. The available levels of quantization
vary from Jetson to Jetson, as you might have noticed in “The Board Family” section
(see page 4).

What does this really mean? A single weight (one value) in your network takes 32 bits
to be stored. The same weight in the FP16 representation will take half as much
memory (16 bits). Going further, an INT8 value occupies 8 bits and uses integer
computation during inference instead of floating-point math.

But nothing is truly free: be aware that quantization can cause information loss and
distort network representation. The lower your level of quantization, the bigger the
distortion. In practice, you can convert your weights into FP16 without visible
degradation of accuracy, but INT8 is much trickier.

If you’re lucky, you’ll experience a minor drop in accuracy; otherwise, the drop can be
quite dramatic, making your weights unusable. Most of the time, quantization also
requires a dataset calibration to be performed. So make sure to test all the metrics
after your model undergoes quantization.

This behavior can be explained by two factors. First of all, the weights become quite
different from what they converged to during training: different enough for error to
accumulate throughout the layers. Second, different activation functions “survive”
quantization differently.

For example, Alexander Finkelstein et al. in "A Quantization-Friendly Separable
Convolution for MobileNets" investigated the reason for the performance
degradation of MobileNet when it is quantized to 8-bits and claimed that the
problem stems from the use of ReLU6. Although ReLU6 is known to reduce the
quantization range, which should be a good thing, they explain that in MobileNet it
clips the signal in the early layers, distorting the signal distribution and making it less
quantization friendly.

Now that you’ve learned what TensoRT is and what quantization gives you, you can
compile your model with the precision you want. As mentioned above, it can be done
in two steps: PyTorch model to ONNX, ONNX to TRT engine. So, with a TRT engine at
hand, let’s proceed to benchmarking.

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™20

It’s easy to forget that inference is not the only thing that takes time. Aside from
inference, an application is composed of operations such as pre/post-processing,
data loading, data copies, etc. These are all repetitive and take up time in addition to
inference. So, when you benchmark, remember to test your applications end-to-end.

Know Your Application Flow

https://arxiv.org/abs/1803.08607

It may be that you have the most control over the model, but measuring the whole
pipeline can help you discover where bottlenecks are hiding. Profiling the following
metrics will help ensure an accurate benchmark time for real-world application flows:

Repeat

Read from
disk/network

Copy
CPU → GPU

Inference
forward pass

Write results to
disk/network

Copy
GPU → CPU

Figure 10: Application flow. It’s also a
good idea to use jtop to monitor the
real-time status of your lifecycle
efficiency during the application pipeline.
It displays CPU, RAM, GPU status,
frequency, and more with everything
updated live.

Read from disk / network

Pre-processing

Copy CPU → GPU

Inference

Copy GPU → CPU

Post-processing

Write results to disk / network

Repeat

Benchmarking is harder than it sounds. It’s full of subtle nuances that even
experienced programmers forget about, and can lead to inaccurate latency
measurements. Knowing this, we developed Infery, a free Python runtime engine that
makes it simple to run inference and benchmark optimized models. It involves just
three lines of code and supports major hardware types and frameworks, including:

Let's Benchmark

NVIDIA TensorRT

TensorFlow

Keras

ONNX Runtime

TorchScript

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™21

https://pypi.org/project/jetson-stats/
https://pypi.org/project/infery/

Considering the above, if you choose to use Infery for your TRT engines on Jetson,
there’s a bonus: an API that will help you benchmark in your future projects. The
constant evolution of deep learning frameworks and libraries means developers often
get bogged down trying to learn and integrate new code to do the same work on a
new device.

What’s more, error handling is not always user-friendly, leaving you in a situation
where you don’t really understand what you did wrong or how to fix your code and
move on. Infery takes care of all this. It’s all about being developer-friendly. This is
accomplished thanks to its unified API, which is a combination of industry best
practices, simplified to the max.

If you are not convinced yet, here are three more reasons to use it:

You can benchmark parts of the application flow separately

Together with latency and throughput, the measurements you get from Infery
include the timing of a copy from CPU to GPU and back.

It works seamlessly with the Deci platform

Infery is a stand-alone library, but when coupled with the Deci platform, you
can optimize and deploy your models in a matter of minutes to boost inference
performance on your preferred hardware, while maintaining the same
accuracy. Once you optimize your model on the Deci platform, only three simple
copy-pastes separate you from running local inference for your optimized
model. Read on to learn more about the Deci platform.

33

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™22

11

22 Infery manages dependencies for you

Installing several deep learning libraries or runtimes together often results in a
struggle with broken environments. For example, to install the Torch, ONNX,
and TensorFlow libraries together, you’d have to hunt for the correct version of
a mutual dependency, like NumPy. This will enable them to coexist in the same
environment, without breaking or affecting other installed packages.

On Jetson this is an even bigger deal because you need to manually download
the correct wheels. With Infery, it’s just the opposite. Infery’s versions are
designed and tested to be installed successfully under multiple environments
and edge cases. Whether it’s an existing environment or a new one, Infery will
make sure the installation is successful.

https://deci.ai/platform/

For instructions on how to install Infery on your Jetson please refer to Infery’s
documentation page or the Deci Inference Examples repo on GitHub.

Here’s the flow for working with Infery and what makes it so easy:

How to Use Infery in 3 Simple Steps

Load the model

First and foremost, the TRT engine that you created should stay in its
environment.

If you created an engine on one Jetson model (e.g., Nano) and in one JetPack +
TensorRT version, but then moved it elsewhere, it won’t load because model
compilation leverages the GPU architecture and takes versions of the CUDA-
related libraries into account. Please keep this in mind. Even if you manage to
load your checkpoint after the mentioned changes, it might be a good idea to
recreate it.

Infery checks and validates the compatibility of the model. If there are errors, it
helps you understand exactly what you have to do next to progress.

11

In [1]: import numpy as np
In [2]: import infery
Jetson stats: {
 "APE": 150,
 "CPU1": 28,
 "CPU2": 96,
 "CPU3": "OFF",
 "CPU4": "OFF",
 "CPU5": "OFF",
 "CPU6": "OFF",
 "EMC": 3543340,
 "GPU": 3,
 "MTS BG": 1,
 "MTS FG": 1,
 "NVDEC": "OFF",
 "NVENC": "OFF",
 "NVJPG": "OFF",
 "RAM": 3543340,
 "SWAP": 0,
 "Temp AO": 37.5,
 "Temp AUX": 37.5,
 "Temp CPU": 41.0,

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™23

https://docs.deci.ai/docs/infery
https://github.com/Deci-AI

 "Temp GPU": 38.5,
 "Temp thermal": 38.85,
 "fan": 100.0,
 "jetson_clocks": "ON",
 "nvp model": "MODE_15W_2CORE",
 "power avg": 5580,
 "power cur": 6511,
 "time": "2022-05-15 20:17:01.579317",
 "uptime": "3 days, 7:39:11.480000"
}
__init__ -INFO- Infery was successfully imported with 2 CPUS and 1 GPUS.
In [3]: model = infery.load('yoloxS_640_fp16.engine',
framework_type='trt')

infery_manager -INFO- Loading model yoloxS_640_fp16.engine to the GPU

As you can see, Infery also summarizes Jetson’s state on import, which is extremely
important to keep in mind during benchmarking.

Run inference

It’s worth noting that Infery also lets you easily run inference in Python. It’s called
Infery for a reason, right? 😉

For example, say you have a YOLOX-s object detection model with an image
that is already loaded in memory, and you want to run inference on this image.
Run a few lines of code and you’ll get the predicted bounding boxes. There’s no
need for any extra configuration file. Just remember to pre-process the image
according to what your model expects, before calling model.predict() .

Just to clarify, we use YOLO here for demonstration purposes, but the task of
the model doesn’t really matter. Whether it’s computer vision, natural language
processing, or voice recognition, Infery wraps the model for seamless inference.

22

model.predict()

In [4]: inputs = np.random.random((1, 3, 640, 640)).astype('float16')

In [5]: model.predict(inputs)
Out[5]:
[array([[[-2.75634766e-01, 1.99829102e-01, 8.36910152e+00, ...,
 1.00097656e-02, 1.00097656e-02, 1.00097656e-02],
 [7.72265625e+00, 1.99829102e-01, 8.36910152e+00, ...,
 1.00097656e-02, 1.00097656e-02, 1.00097656e-02],
 [1.57265625e+01, 1.99829102e-01, 8.36910152e+00, ...,

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™24

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™25

 1.00097656e-02, 1.00097656e-02, 1.00097656e-02],
 ...,

 [5.46500000e+02, 6.06500000e+02, 3.13676586e+01, ...,
 1.00097656e-02, 1.00097656e-02, 1.00097656e-02],
 [5.78500000e+02, 6.06500000e+02, 3.13676586e+01, ...,
 1.00097656e-02, 1.00097656e-02, 1.00097656e-02],
 [6.10500000e+02, 6.06500000e+02, 3.13676586e+01, ...,
 1.00097656e-02, 1.00097656e-02, 1.00097656e-02]]],
 dtype=float32)]

Benchmark the model

At last, back to benchmarking. All you have to do is enter a batch size and input
dimensions. You’ll see that the measurements change significantly as you
modify these factors.

Remember, these should be the values you used during model compilation. For
example, if you need to bump up the batch size to a bigger one or increase input
resolution, you’ll have to create a new engine specifically for this purpose. This is
how TensorRT is designed.

33

In [6]: model.benchmark(batch_size=1, input_dims=(3, 640, 640))
base_inferencer -INFO- Benchmarking the model in batch size 1 and
dimensions (3, 640, 640)...
Out[6]:
<ModelBenchmarks: {
 "batch_size": 1,
 "batch_inf_time": "17.01 ms",
 "batch_inf_time_variance": "1.01 ms",
 "memory": "2.48 mb",
 "pre_inference_memory_used": "2.47 mb",
 "post_inference_memory_used": "2.48 mb",
 "total_memory_size": "15.45 mb",
 "throughput": "58.79 fps",
 "sample_inf_time": "17.01 ms",
 "include_io": true,
 "framework_type": "trt",
 "framework_version": "8.0.1.6",
 "inference_hardware": "GPU",
 "date": "20:17:42__05-15-2022",
 "ctime": 1652645862,
 "h_to_d_mean": "0.94 ms",
 "d_to_h_mean": "0.27 ms",
 "h_to_d_variance": "0.22 ms",
 "d_to_h_variance": "0.00 ms"
}>

Figure 11: Infery Python runtime engine to run inference locally

Everything seems rather easy, but then, someone still has to install the package,
create an engine, benchmark it in a few batch sizes, and more. Don’t you wish
someone (or something) would do it for you beforehand?

The Deci deep learning development platform includes various tools that help tackle
the problems described above and to relieve the pains of taking models to
production. The platform lets you optimize your deep learning models' accuracy and
inference performance for any hardware by leveraging techniques such as graph
compilation, quantization, and Neural Architecture Search (NAS), among others.

You can also use the Deci platform to compare your model’s performance on
different hardware and batch sizes. This can help you decide what is the best
hardware for your use case. The platform also makes it easy to experiment with
production settings. And, if you still don’t have a model at hand, or are not sure what
architecture to choose for your task, you can use Deci's NAS engine to build a custom
model architecture that is tailored for your use case, hardware, and performance
goals.

We know no one likes to read long manuals for simple things, so just go ahead and
check out our platform for yourself. Below, for your convenience, you can find more
details on the main tools the platform offers:

Deci Platform to the Rescue!

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™26

https://deci.ai/platform/
https://deci.ai/platform/

33 Build fast and accurate hardware aware model architectures with our NAS engine

Benchmarking Your Model on Various Hardware

Figure 12: Deci platform - compare your models'
performance across various hardware.

You can upload models for benchmarking and optimization. Your model will be
automatically benchmarked on a variety of different hardware and batch sizes, with
randomized tensors as inputs. You will then be able to see your model’s performance
(latency, throughput, model size, and memory footprint) on different hardware, and
see which hardware and batch size works best with your model.

Compile and quantize your models for the selected hardware with a few clicks22

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™27

Benchmark your models on various hardware, hassle free with our online hardware fleet11

44 Easily leverage advanced training techniques and SOTA recipes with one line of code

55 Deploy with 3 lines of code using Infery - Deci’s Python Inference Runtime Engine

Figure 13: Deci platform - optimize your model to target hardware and batch size

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™28

With the Deci platform you can automatically quantize and compile your model for
the production environment. If you’re still thinking about what hardware to choose,
you can always make multiple optimizations and compare them in the platform to
choose the one with the best results.

Optimizing your Model for Selected Hardware

Figure 14: Deci platform - compare your model and its optimized versions

Figure 15: After
optimizing your model
with the Deci platform,
simply download the
optimized model file
and with 3 copy-pastes
you are ready to run
inference with Infery

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™29

In your regular training environment, your model may have a similar runtime to its
competitor architectures, while on Jetson it might become much slower. For example,
look at the latencies (in milliseconds) of GoogLeNet V1 and ResNet34 compiled in
TensorRT, FP16 compared on two GPUs: T4 and Jetson Nano.

When the Hardware Surprises You

Go ahead and profile how much time each layer takes. With the trtexec mentioned
earlier, you can see the average time it takes to execute each layer’s output: the
absolute value as well as the percentage of the total.

This and other similar situations are not uncommon. They prove that on each
hardware, and even more so with each model compiler and quantization level,
different layers will benefit from different rates of acceleration. Beyond being a
surprise, it is also a challenge to predict the behavior in advance and identify its root
cause. Instead of guessing and before digging into possible theoretical explanations,
consider the debugging technique discussed in the next section.

Profile Your Network

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™30

T4

GoogLeNet V1

ResNet34

1 ms

1 ms

Jetson Nano

24 ms

24 ms

To get these measurements, use the --dumpProfile flag. Here is the command: --dumpProfile

/usr/src/tensorrt/bin/trtexec --
loadEngine=/path/to/you/trt_model.engine --dumpProfile

13 ms

Table 2: GoogLeNet V1 and resNet34 Latencies, ms

Figure 16: Output of this command for ResNet34 on NVIDIA Jetson Nano (the model
from the table above)

These numbers are useful for two reasons:

They will help you see if there’s a layer that takes more time than you’d expect.
For example, imagine a layer that takes 30% of the runtime. That’s your first
candidate for some improvement!

11

Say, layer X takes 2% of the runtime on T4, but 7% on Nano. That could be an
indication that this operation is less optimized on a Jetson and it’s worth looking
into further.

You can also do this in Infery, which was introduced in “How to Use Infery in 3
Simple Steps” (see page 23). Infery can conveniently highlight the layers that are
the biggest bottlenecks. See example below:

22

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™31

In [2]: model = infery.load('yoloxS_640_fp16.engine',
framework_type='trt', profiling=True)
infery_manager -INFO- Loading model yoloxS_640_fp16.engine to the GPU
[TensorRT] WARNING: Using an engine plan file across different models
of devices is not recommended and is likely to affect performance or
even cause errors.
trt_engine -WARNING- You have specified "profiling=True" thus runtime
latency will be affected! Please do not use engine this for
benchmarks.
infery_manager -INFO- Successfully loaded yoloxS_640_fp16.engine to
the GPU.
In [9]: model.get_layers_profile_dataframe()
Out[9]:
 Layer Name ms Percentile
0 Slice_4 0.184128 1.235265
1 Slice_9 0.081024 0.543568
2 Slice_14 0.150752 1.011354
3 Slice_19 0.080256 0.538416
4 Slice_24 0.150656 1.010710
..
190 PWN(Exp_348, Mul_350) 0.008320 0.055817
191 Slice_355 0.106688 0.715741
192 885 copy 0.023584 0.158219
193 893 copy 0.017408 0.116786
194 898 copy 0.123616 0.829306

[195 rows x 3 columns]
In [10]: model.get_bottlenecks(5)
Out[10]:
 Layer Name ms Percentile
134 Conv_248 || Conv_255 0.762560 5.115809
10 Conv_41 0.594592 3.988957
136 Conv_251 0.415680 2.788685
140 Conv_258 0.412672 2.768505
12 Conv_44 0.376800 2.527849

Let’s assume you chose the best model architecture you could, localized all the
bottlenecks, and made some changes to improve the runtime. The model is now
ready to be trained. But after all the modifications, how can you guarantee that the
new architecture is capable of reaching good performance results as well as your
target accuracy metric?

The answer is very specific. A high level of expertise is crucial for success, as well as
extensive resources, time, and budgets for iteration after iteration. Luckily, there is
another option: neural architecture search (NAS).

Resort to Neural Architecture Search

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™32

As you can imagine, NAS comes with challenges and is far from easy. The search
space can be somewhere in the order of 1018. When approached directly, even
benchmarking at this kind of scale is a complex problem, let alone training. Now,
imagine how much training time it would take: around 4 to 16 GPU days per model
multiplied by 1018!!!!

At Deci, we looked into how we can scale the optimization factor of this algorithm.
Our proprietary NAS technology, known as Automated Neural Architecture
Construction (AutoNAC), modifies the process, and therefore, unlike traditional
methods, Deci's AutoNAC engine is a viable solution for AI teams of all sizes.

With NAS-based AutoNAC, everything is done in a single shot that takes around 2.5X
the standard training time. The output is a custom model architecture that is
guaranteed to meet your accuracy, latency, throughput, and model size targets.
Compared to the theoretical cost of training hundreds or thousands of models, this is
a major improvement in terms of time, money, and required manual effort. You can
read more about AutoNAC in the white paper here.

The NAS process designs and searches for the best structure of the neural network for
your task, performance targets, and inference environment. To be more specific, NAS
starts with a candidate neural architecture, and it spans from there, creating a huge
search space containing many potential architectures. The algorithm then analyzes
those models and assesses the accuracy of the candidates. It uses a machine
learning-based algorithm to analyze a given set of architectures and select those that
have a high probability of possessing the best accuracy while also achieving the
desired latency or throughput or model size.

Doing NAS the Easy Way

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™33

Figure 17: Deci’s AutoNAC engine

18

18

https://www.deci.ai/technology
https://info.deci.ai/hubfs/resources/deci-white-paper-autonac.pdf

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™34

Figure 18: Enabling real-time semantic segmentation for an automotive application. Using
Deci’s AutoNAC engine, a faster and smaller model was built. Latency was reduced by 2.1X,
model size was reduced by 3X, and memory footprint was reduced by 67% – all while
maintaining the original accuracy.

Figure 19: The new model built with Deci’s AutoNAC engine, delivered a 3.1X increase in
throughput while maintaining the same accuracy.

TRAINING YOUR MODEL
FOR JETSON

If we’re already talking about neural architecture search and the training involved in
this process, we might as well dive deeper into the training itself. How do you train
your architecture for Jetson? Well, aside from choosing the architecture, training a
particular model for Jetson is the same as for any other hardware. It is performed on
any server with strong GPUs, or on a couple of them; ultimately, the weights obtained
are deployed into production together with the model.

But wait! Remember the quantization step mentioned earlier and how it can seriously
decrease the precision? We noted specifically that using INT8 can hurt your model’s
accuracy. This is indeed oftentimes true, and training is the stage where you get the
chance to mitigate this problem.

Say, for example, you decide that deployment in INT8 is your go-to option in terms of
latency. You take your trained model and perform post-training calibration during
quantization to INT8, but unfortunately get unsatisfactory results. This is when
quantization-aware training might be what you need to restore the accuracy.

Quantization-aware training, or QAT for short, is a technique that introduces
additional steps during training that prepare your model to be deployed in 8-bit. If
deployment in 8-bit is not your plan, QAT is an unnecessary complication; but,
otherwise it can be a very effective approach.

The name speaks for itself: training is performed with awareness that the inference
will be done in INT8. It results in a much faster model with uncompromised accuracy.
However, finding a library that offers a smooth transition to such a training regime
can be a headache. Luckily, our team implemented quantization-aware training into
 SuperGradients - Deci’s free, open source library for PyTorch-based computer vision
models. To aid you in this stage even more, we collected some general tips and tricks
for training any model. All of them are features of SuperGradients.

SuperGradients is a one-stop-shop for training or fine-tuning SOTA pre-trained
models for all the most commonly applied computer vision tasks, such as object
detection, image classification, and semantic segmentation for videos and images.
It’s a convenient way to start playing with the listed tasks or with your own model, and
most importantly to experiment with the training tricks listed below.

Quantization-aware training,
during

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™35

https://bit.ly/3To1bZ9

Exponential Moving Average – EMA

EMA is a method that increases the stability of a model’s convergence and helps
it reach a better overall solution by preventing convergence to a local minima.
To avoid drastic changes in the model’s weights during training, a copy of the
current weights is created before updating the model’s weights. Then the
model's weights are updated to be the weighted average between the current
weights and the post-optimization step weights.

Weight Averaging

Weight averaging is a post-training method that takes the best model weights
across the training and averages them into a single model. By doing so, we
overcome the optimization tendency to alternate between adjacent local
minimas in the later stages of the training. This trick doesn’t affect the training
whatsoever, other than keeping a few additional weights on the disk, and can
yield a substantial boost in performance and stability.

11

22

Batch Accumulation

When you use a model ‘off the shelf,’ it generally comes with a suggested
training recipe. The thing is, these models are usually trained on very powerful
GPUs, which may mean the recipe is not necessarily appropriate for your target
hardware. Reducing the batch size to accommodate your hardware will likely
require tuning other parameters as well and you won’t always get the same
training results.

To overcome this issue, you can perform several consecutive forward steps over
the model, accumulate the gradients, and backpropagate them once every few
batches. This mechanism is known as batch accumulation.

33

Precise BatchNorm

BatchNorm layers are meant to normalize the data based on the dataset’s
distribution. Ideally, we would like to estimate the distribution according to the
entire dataset. Although this kind of estimation isn’t possible, we can use
BatchNorm layers to evaluate the statistics of a given mini-batch throughout
the training.

The paper Rethinking “Batch” in BatchNorm by Facebook AI Research, showed
that these mini-batch based statistics are sub-optimal.

44

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™36

https://www.arxiv-vanity.com/papers/2105.07576/

Instead, the data statistics parameters (the mean and standard deviation
variables) should be estimated across several mini-batches, while keeping the
trainable parameters fixed. This method, known as Precise BatchNorm, helps
improve both the stability and performance of a model.

Zero-weight Decay on BatchNorm and Bias

Any ‘go-to’ model for various computer vision tasks is likely to have batchnorm
layers and biases added to their linear or convolution layers. When you’re
training this kind of model, it works better if you set the optimizer’s weight decay
to zero for the batchnorm and bias weights.

The weight decay is a regularization parameter that prevents the model weights
from ‘exploding.’ Zeroing the weight decay for these parameters is usually done
by default in various projects and frameworks, but it’s still worth checking since
we noticed that it’s not yet the default behavior for PyTorch.

Weight decay essentially pulls the weights towards zero. While this is beneficial
for convolutional and linear layer weights, batchnorm layer parameters are
meant to scale (the gamma parameter) and shift (the beta parameter) the
normalized input of the layer. As such, forcing these values to a lower value
would affect the distribution and lead to inferior results, so it’s helpful to enable
zero-weight decay for these parameters.

55

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™37

BEST PRACTICES FOR DEPLOYING
YOUR MODEL ON JETSON

Fully utilizing the power of a single Jetson module is tricky enough and it was already
discussed in “Maximizing Compute Power with the Right Configuration” on page 11.
However, what if we’re not just talking about one module but a few of them? After all,
Jetson modules are powerful, but you may need more compute power than just one
module.

In some cases, you’ll want to connect to as many IoT sensors as possible to reduce the
hardware costs. In other cases, like autonomous vehicles, you’ll want to maximize the
number of model instances that you can fit on a single Jetson device and run them in
real-time (in terms of memory).

The amount of IoT devices connected directly affects the IO of the Jetson device. This
means the concurrency sweet spot must be taken into account when searching for the
optimal number of processes and threads.

Distributing and Balancing Compute Power

There are no firm rules when it comes to deployment parameters such as batch size,
image resolution (if you operate on images), model size, or the number of
simultaneous inputs. Your application will usually apply some constraints on the
choices you have. What's more, the constraints of the Jetson itself make it difficult to
tune to the right deployment parameters that will optimize compute power and
memory space.

Based on our experience with AI model optimization, we’ve gathered the three best
practices to address these issues.

Finding the Right Deployment Parameters

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™38

By now, you should have completed the steps above and reached deployment.
Congratulations! It’s time to complete the very last stage before your application is
seen by the world.

This includes addressing potential challenges such as power distribution and
deployment parameters. Let’s look at these issues one by one.

Because Jetson has limited memory space, you’ll need a batch size that is small but
not so small that it adversely impacts throughput. For example, if your application
involves object detection, the ideal batch size should allow you to reach 30 FPS end-
to-end to perform in real-time. When working with a GPU, we strive to use a batch
size higher than 1 but lower than 64.

Deci has automated solutions for this long and frustrating process, but generally, we
recommend keeping the batch size small if the output is large. Sometimes it’s better
to use 4 replications of batch size 2 than work with a single replication in a batch size
of 8. If you haven’t done it already, consider using the Deci platform to determine how
your model performs with different batch sizes on Jetson devices.

Don't be constrained by a Python-like mindset that runs line-by-line, and use an
asynchronous approach whenever possible. Python is an interpreted language
and we often use it to implement inference, but we rarely use it to implement a
multi-process solution that uses multiple CPU cores at the same time.

One way to ramp up your code optimization is by using concurrent code and allowing
multiple processes to run at the same time. This lets the application carry out
analytics on more inputs at once, instead of just one.

Use Concurrent Code and Multiple Processes

If you want better throughput, increase parallelism. Your main process can spawn
multiple processes, where each one loads the model to the GPU and runs
inference independently.

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™39

Use the Right Batch Size

The model isn’t the only part that does the heavy-lifting though. Take the time to
find the optimal number of processes for loading data, inference, post-processing,
and client threads. If you use Python (and quite likely you do), you can leverage the
Python Multiprocessing module to enable parallel / asynchronous code execution.

To summarize this part, the number of threads and processes makes a huge
difference. The optimal configuration or combination of these is usually achieved by
trial and error. They have to live in harmony and work in concert so they don't disrupt
one another. Make sure to invest enough time in this step since it's crucial for optimal
deployment on Jetson.

https://deci.ai/resources/blog/optimize-inference-pipeline-production/

Although this may slightly compromise your ability to get an accurate reading for
speed, it serves to increase the device’s fault tolerance.

Use a Swap File for Production

The Ultimate Guide for Computer Vision on NVIDIA® Jetson™40

SUMMARY

NVIDIA Jetson is one of today’s most popular families of low-power edge hardware.
It’s designed to accelerate deep learning models on edge hardware, whether for
robotics, drones, IoT devices, or autonomous cars.
We know that hardware plays a major role in performance, but you also need to tune,
optimize, or update your model so it does its best work on your hardware.

In short, deploying deep learning AI models on Jetson can be tricky. But once you
have the right tools and best practices in your arsenal, it becomes easier. We looked
into ways you can optimize for better performance, find the parameters for
production that are most cost effective, adjust your compute and power settings, and
do your testing in a way that identifies which aspects of your environment are
problematic.

And, of course, you can always request a free trial and use the Deci platform to
automate your model optimization for Jetson, build custom hardware aware model
architectures to reach unparalleled accuracy and speed and use the Infery Python
runtime engine to seamlessly deploy your optimized models to production.

ABOUT DECI
Deci enables deep learning to live up to its true potential by using AI to build better AI.
With Deci’s platform, AI developers can easily build, optimize, and deploy highly
accurate and efficient models to any environment including cloud, edge, and mobile.
Leading enterprises are using Deci to boost their deep learning models’ performance,
shorten development cycles, enable new use cases on edge devices, and reduce
computing costs.

For more information, visit deci.ai

http://deci.ai/

